[Arbeitsgruppen | Forschung | Studium & Lehre | Allgemeines | Home | Suche | English]

Arbeitsgruppen und Lehrstühle


Studium und Lehre




Fakultät für Informatik


Geometric Data Structures

Winter term 2018/19

Stefan Schirra

We have a look at asymptotically efficient data structures, especially data structures for geometric problems. Among other structures, we discuss heaps, augmented balanced binary search trees, range trees, interval trees, priority search trees, segment trees, and point location data structures. Furthermore, we will discuss data structuring techniques like making data structures (partially) persistent and making data structures dynamic.

Lecture   1
01 Sample Problems, Literature
02 Abstract Data Types
03 Basics
04 Dynamic Array, Amortized Analysis

Lecture   2
05 Binary Heap
06 Unordered Linked List as a Priority Queue
07 Leftist Heap
08 Binomial Heap

Lecture   3
08 Binary Heap Amortized Analysis
09 Fibonacci Heap

Set 1

A Self-Adjusting Search Tree by Jorge Stolfi

Prerequisites :
Basic knowledge in algorithms and data structures (such as sorting algorithms, balanced binary search trees, lists, and stacks), asymptotic analysis using the Big-Oh notation, and basic knowledge in computational geometry.


Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars
Computational Geometry: Algorithms and Applications
Springer-Verlag, third revised edition, 2008.

Hanan Samet
Foundations of Multidimensional and Metric Data Structures
Morgan Kaufmann, 2006.

Elmar Langetepe, Gabriel Zachmann
Geometric Data Structures for Computer Graphics
A K Peters Ltd., 2006.

Pat Morin
Open Data Structures
AU Press, 2013.

Webmaster  -