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ABSTRACT

We present a technique to visualize global uncertaintyatistary
3D vector elds by a topological approach. We start from arsex
ing approach for 2D uncertain vector eld topology and exténis
into 3D space. For this a number of conceptional and techelicé-
lenges in performance and visual representation ariserder @o
solve them, we develop an acceleration for nding sink anarse
distributions. Having these distributions we use overlaptheir
corresponding volumes to nd separating structures andilead
As part of the approach, we introduce uncertain saddle anddo
ary switch connectors and provide algorithms to extraatnthEor
the visual representation, we use multiple direct volumelegings.
We test our method on a number of synthetic and real data sets.

Keywords: Uncertainty Visualization, Vector Field Data,
Topology-based Techniques

1 INTRODUCTION

An appropriate visual representation of uncertainty i# stie of
the main challenges in visualization [15]. Although a varief ap-
proaches has been developed to represent uncertaintyffienedi
data classes, the problem is especially challenging for date.
For this, uncertainty is a global phenomenon: along witheoth
guantities, the uncertainty is transported within the ®e].

Different approaches exist to visualize the uncertaintyeaftor
elds in a local context. In contrast, [22] explains the nesigy to
treat uncertainty of vector elds in a global context andg@ets an
approach for 2D elds by de ning and extracting uncertaircta
eld topology.

However,
space. In order to analyze the effect of uncertainty (eegylting
from different parameter settings in the simulation), a@ppiate vi-
sualizations are necessary that take the uncertainty argiabal
transport into account. This paper presents the rst apgrda
visualize the global uncertainty of 3D vector elds. Forghive
extend the concepts of 2D uncertain topology to 3D elds. Whi
some concepts of 2D uncertain topology can be easily extetule
3D, a number of conceptional and technical challenges rabe t
solved in order to establish uncertain topology as a vigatn ap-
proach for 3D ow data. Their solutions are the main conttibos
of this paper:

Performance of nding the uncertain segmentation: the 2D
approach [22] was based on a Monte Carlo particle integra-
tion. A straightforward extension to 3D leads to unaccept- 4y, ation methods incorporating uncertainty can be foung8j 4].
able computing times, because a higher number of partigles i

needed. To solve this, we introduce a new preprocess as well

as an ef cient CUDA implementation.

Performance and accuracy of nding critical points: to im-
prove the accuracy and performance we approximate optimal
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ow data is often obtained from simulations in 3D

step sizes for the Monte Carlo integration in a preprocess.

Stream line integration: we introduce a modi cation of the
uncertain stream line integration from [22] which makes the
integration more accurate with respect to varying intégnat
step sizes.

New uncertain topological features for 3D elds: while many
concepts (e.g., critical points) have a straightforwartbex
sion from 2D to 3D, there are 3D topological features which
do not exist in 2D. In particular, we introduce the concept
of uncertain saddle connectors as well as uncertain boyndar
switch connectors and provide algorithms to extract and-vis
alize them.

Finding saddles: nding saddles in 2D uncertain elds is don
by a Monte Carlo integration of an appropriate derived eld.
For the 3D case we can rely on a simpler extraction based on
the found sources and sinks.

Visual representation: for 2D vector elds the uncertaipde
logical skeleton consists of a number of 2D scalar elds; for
their visualization a number of standard methods are avail-
able (in [22] height surfaces where chosen). In 3D, the data t
be visualized are a multitude of partially overlapping voki
data sets (where the overlapping parts are particularyest-
ing). For the visual representation we use volume rendsring
for the distributions and the uncertain in ow/out ow regis.

Input data: the input of our approach araultiple 3D steady vec-
tor elds, i.e., a collection oN 3D vector elds describing different
simulations or measurements of a 3D ow. Each of the elds de-
scribes a simulation/measurement of the same ow phenomeno
including certain errors and uncertainties. In this paperdo not
analyze the source of the errors but focus on the impact ofthe
duced uncertainty. See [23] for a classi cation of differenurces

of uncertainty.

2 RELATED WORK

Incorporating uncertainty into visualization is a welsearched but
still challenging problem. Here we restrict our treatmeintatated
work to uncertainty visualization in ow visualization. @bh based
approaches are presented in [17, 36]. A reaction-diffusiodel to
describe uncertainty is presented in [28]. Texture basedvisu-

[37] describes an approach to uncertainty visualizatiohidtirec-
tional vector elds. All approaches mentioned above haveam-
mon that they focus on 2D data and that they treat uncertaisity
local phenomenon. A rst approach to visualize the globabact

| of uncertainty in ow elds was given in [22] by extending top

logical concepts to uncertain ow data.

A class of approaches related to ours is the extraction of La-
grangian Coherent structures in ows because also ther&rdns-
port of particles over a certain time is considered to nd e@nt
structures. Based on this, [10] describes an approach tgzana
the reliability of ow predictions. Contrary to our work, éhinput
there are "hard” ow elds, i.e., there is a well-de ned anahigue
velocity vector at each location in space-time.



In DT-MRI visualization, probabilistic ber tracking haselen
proposed [19, 30] which relates to our approach but worksibn d
ferent data classes.

Vector eld topology — transition from 2D to 3D

Topological methods are a standard tool for visualiZiyvector
elds. Starting with [12], a signi cant amount of research hasrbee
done in the eld [26, 16].

For 3D elds, most topological structures are well-known and
straightforward extensions from 2D [2, 5, 24]. Hence, imiagsdy
after the introduction of 2D topological methods, 3D methbdve
been proposed as visualization approaches [13, 9]. Hoywiffer-
ent technical, perceptional and theoretical reasons [B2Ened 3D
topological methods from being as common as visualizathmh t
as 2D methods. In fact, they were restricted to data sets avith
rather low topological complexity [13, 9, 18]. A number o€lmi-
cal [14, 8, 29, 33] and conceptional [20, 21, 31, 34] improgats
were necessary to make 3D topological methods applicalstaas
dard tools.

In addition, further developments based on topologicahwes
exist [27, 35]. Also, there are approaches to extend tojpcibg
methods to unsteady vector elds which is out of the scopéhisf t

paper.

3 UNCERTAIN VECTOR FIELDS

This section develops the concept of 3D uncertain vectatselind
their topology. The theoretical concepts of 2D uncertaintwe
elds [22] translate straightforward to the 3D case. We rsview
and extend the relevant concepts to 3D.

3.1 Theoretical framework

This section is a direct extension of the 2D uncertainty epitein
[22]to 3D.

A certain 3D vector eld assigns a 3D vectar;v,w)T to every
location(x;y;2)T. For an uncertain vector eld, every location is
assigned a 3D probability distribution function. This Isa to the
de nition:

De nition 1. A stationary 3D uncertain vector eld over the do-
mainD is a 6D scalar eldry(X;y; z; u;v,w) with

(xy,2T 2 Dand(u;vyw)T 2 R®

rvixy,zuvw) 0

Ry Ry R
¥¥ ¥¥ ¥¥ rv(xy;z;u;v,w) dudvdw= 1forall (x;y;2) 2 D.

The valuer(x;y; z; u;v;w) du dv dwdenotes the probability that
at the location(x;y; 2) the vector eld has some value in the range
[Uu+du [vv+dv] [ww+ dw].

A particle seeded in some positigr;y;i;z) 2 D moves along
a vector that is randomly chosen by evaluatmgx;; vi; z ; u; v, w).
This means that it does not make sense to integrate partjgana-
cles in the ow. Instead, 3D particle density distributiaimttions
are integrated which are de ned as follows:

De nition 2. A 3D particle density function over the domairis a
3D time-dependent scalar eld(g;y;z t) with(x;y;2) 2 D; t 2 R*
and

p(xy;zt) Oforall (x;y;22Dandt O
RRR
p P(X Y,z t) dxdydz 1forallt O.
(we use instead of= because particles can leave the do-
main)

The valuep(x;y;z t) dx dy dzde nes the ratio of particles in
[Uju+du [vv+dv] [w,w+ dw]in relation to the initial number
of particles inD att = 0.

For the integration of a whole 3D uncertain vector eld we
consider the in nite domaid = R3 to avoid boundary effects. The
particle density functions are represented by virtual dengparti-
cles without inertia which are non-deterministically sported by
the uncertain vector eld. We consider a time interl that is
short enough that the movement of a particle can be appréséma
by a straight line. We also assume tBatcorresponds to the distri-
butioninry, i.e., that the vector eld describes the probability of a
particle to reach another location in tire. The handling of other
time steps is described in section 3.4.

After one integration step the number of particles in the in-
nitesimal volume dx dy dzat some locatior(x;y;2) is the sum
of the number of particles in cell$i dj dk at all locations(i; j; k)
times the probabilities that they are transported fr@nj;k) to
(Xy;2) in the time intervalDt. The probabilities are given by
(i 1K 25 Yot 2 ) d(Y) d(25F). Adter the division
by the cell volumes we gedx dy dz= di dj dk. The following
equation expresses the transport of particle densities:

p(x;y;z t+ Dt)
7727

p(i; ik ) ru(is i K 5 i 25k)
z2z

wo PEEkONik Highs)dididk (1)

With this equation we can de ne uncertain stream lines ds\id:

De nition 3. A stream line of a 3D uncertain vector eld started
at the initial particle density functiongfx;y; 2) is a time-dependent
particle density function [;y;z t) with p(X;y;z to) = po(X;Y;2)-
The evolution over the time of this particle density funtiie de-
scribed by Equation 1.

Deniton 3 denes a forward integration of p in
rv(xy;z u;v,w). A backward integration can be achieved by
a forward integration ofp in ry(xy;z u; v, w). It also
de nes the uniqueness of streamlines that start at the saitial i
E@{che density functiorpp(x;y;2). De nition 2 guarantees that

b P(X Y,z t+ Dt) dx dy dz= 1 for all positiveDt if D= RS,

With the concept of stream lines of 3D uncertain vector elds
we can now de ne the uncertain counterparts of critical pmin
For this we observe the stream line integration from evecado
tion (i; j;K) (with initial particle density functiong(x;y;z tg) =
d(x i;y j;z K))and their asymptotic behavior fot ¥. The
stream lines leave the domain or converge to critical pdsttidu-
tion functions:

De nition 4. A particle density functiondgx;y; 2) is a critical dis-
tribution of r if % = 0 holds for a stream line integration started
at p(x,;Z to).

Note that also any linear combination ofgiven critical dis-

of ry as well: &L, ai pi(X;y;2) is a critical distribution for any
landdl,ai 1.

From this it follows that critical distributions are not lated, but
build a continuum of critical distributions which followsrdctly
from de nition 3. For a topological analysis we have to nd aite
set of linear independent critical distributions, so thatrg criti-
cal distribution is expressed by a linear combination ofrthéVe
can classify the type of critical distribution by the betmviinder
different integration directions:
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Figure 1: Example eld (2): (a) critical points and illuminated stream
lines of vayg from section 3.2. Sources are displayed by red ellip-
soids, sinks by blue elipsoids, repelling saddles by red cylinders, and
attracting saddles by blue cylinders (b) sink (blue) and source (red)
distributions of ry, represented as volume rendering, including in ow
and out ow regions that are interpreted as sources and sinks .

(b)

De nition 5. A critical distribution g(x;y;2) is a sink distribution

of ry if any small perturbation of p converges to p under forward
integration inry. The same applies to source distributions using
backward integration instead of forward integration.

Saddle distributions cannot be found in this way, becausg th
are unstable under forward and backward integration. Fotdbo-
logical segmentation we focus on sinks and sources. Thists
ed by the fact that for a classical topology of certain vectlds
a topological segment is de ned by a pair of a sous@nd a sinko
containing all locations where a forward integration emds and a
backward integration ends & Therefore, computing our topology
does not rely on the detection of saddles since they can lbénebt
implicitly through computing the separation structures.

We de ne linear independent sequences of sink and souree dis
tributions.

is a sequence of sinks that are linearly independent andyever
sink {xy;2) of ry can be described ad/L; ai pi(xy;2) with
landal;a; 1. Aspanning sources sequence

The weightsaj and bj of the linear combinations that describe
any sink or source distribution are called coordinatep @find g’
with respect to the spanning sink and source sequences.

3.2 Example

In order to illustrate the next sections and further exgdiana we
give a simple example data set. We start by de ning the veeldr
describing the average of the distribution at each loca®n

1
2( x(1 N(L+X(L ¥ ¥?%)

Vag(X Y2 = @ 2(y(1 y)(1+y)(1 *)+ x%y) A
2(z(1 2(1+ (1 X3+ x22)

)

over the domaif 2;2]3. Figure 1a gives an illustration of this
average vector eld. The 3D uncertain vector eld is de ned a
Gaussian distribution functions:

1 1 . TT 1 .
. U = 3(V Vag(X¥:2)'T (v Vav(X¥:2)
rvixX\y,z, Uy v, w, —p——e 2 9 9
(3)

withv=(u;v;w)T and

04 0 0
T=Txy2=@0 04 0 A: 4
0 0 04

This uncertain 3D vector eld consists of two source digitibns,
four sink distributions, two out ow regions and ve in ow rgions.

3.3 Computation of critical distributions

In order to nd critical distributions, we adapt the methagrh
[22] to 3D. Here, an uniformly distributed particle dendijmction
was created. After forward and backward stream line integra
the particle density function converges to a critical disttion,
which represents sinks and sources, respectively. Thielgaden-
sity functions were implemented using a high number of pladi
which were traced over time, until the particle distributllecomes
invariant. In the 3D case this technique works as well. Harev
it is computationally very expensive, because many mortgies
are needed to adequately represent density distributioctiins
and the stream line integration is more complex.

To make the technique applicable in 3D, we introduce an accel
eration technique. To improve the convergence of the peiinc
tegration we introduce a precomputed optimal integrattep size
at every grid point. For this we approximate the absoluterdre-
tween four and eight integration steps with step size Dt and
ts=2, respectively. This yields

err(xy,2) = jjva vajj+ijTa TgjjF (%)
with
Viyd = (XY tsVaug(X ¥ 2)
Vi=Vi(Xyid = Vi 1+ tsv(vi 1)
Ti(xY;2 = tsT(vo)
Ti=Ti(xy2 = T 1+tT(w)

The error approximation starts with a given minimumBbfwhich
we increase until a given error threshold is reached. We samlif-
ferent step sizes in every data point of the grid, becauseeverdy
interested in the nal particle distribution and not in tiiédgration
time. These step sizes are trilinearly interpolated asagihe vec-
tor eld. An adaptively chosen step size for every particieevery
integration step as known from Runge-Kutta method is infdas
according to present computation power.

Figure 1b shows an example, where critical distributiorses-
tracted. In conclusion, this process signi cantly accetes the
search for critical distributions while keeping the nuratierrors
small. In our example eld (2) we get the same result with th# h
number of integration steps, keeping the same accuracy.

3.4 Stream line integration with Gaussian distribution
functions

The stream line integration from de nition 3 assumes a camist
step sizeDt corresponding to the vector eld distributian,. How-
ever, for the implementation we need different step sizesrder
to minimize integration steps while maintaining stabilitynfor-
tunately, different step sizes cannot be applied to equdfip be-
cause (multiple) convolution of linearly scaled distriloat func-
tions does not yield the original distribution function.riexample,
two integration steps witl% would result in a different particle
density function than a single integration step viith

For the special case of Gaussian distribution functionshesvs
how to scale the distribution functions for different stépes ap-
propriately. We assume a target step sizBtgt= 2, i.e.,sintegra-
tion steps of the Dirac delta should result in the originatrithu-
tion from ry. If we assume Gaussian distributions, our integration



method can also be modeled by a stochastic differentialtioua
describing the Brownian motion

Zy Zy
X(t)= xo+ b(X(r))dr+ B(X(r))dwW (6)
0 0
with Xg as initial point,b(X(r)) as mean vector eldB(X(r)) as
eld of covariance matrices, and/ as standard Wiener process. For
the standard Wiener process there exists a heud®tic (dt)12
[6]. In our discrete case this meafdt)12 = s 172, Here we can
con rm the correctness of this rule by considering the 1D &#an
distribution function:
x_my2
= ps e 259 )
2ps
We want to reproduce this function by convolving a Dirac
delta d(x) stimes with a scaled distribution functiog(x;s). In
order to achieve this, we scale the standard deviation sviffi?

and the mean value with 1;

'

m
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g(xs) = ¢&—=——e (8)

1
2p
> S

Starting with a Dirac delta

ho(X)

the convolution oh with g(x;s) is described by
Zy
h«(X)g(x r9)dr
¥

d(x);

9)

hir 1(¥) =

This series is described by the following function
p_

S 1 (km xs)z
r(xk;s)= p———e * =2 :
2kps

(10)
Integratingd(x) s-times corresponds convolving sitimes. Then,
k= sandr(xk;s) = f(x). Therefore, integrating(x;s) s-times
results in the original distribution functiof(x). Thus, the mean
value has to be scaled Isy! and the standard deviation lsy? in
order to properly integrate with step sisel™. This argumenta-
tion also holds for the 3D case, where the covariance maét(see
equation (3) ) has to be scaled §y*2.

In the context of stochastic differential equations, ourthod
can also be regarded as a random dynamical system [11].
search for uncertain sources and sinks is equivalent todimpg-
tation of random attractors [1]. In contrast, we also coasitbn-
attracting structures like saddles and separating stegand give
ef cient methods to compute the uncertain topology.

3.5 Uncertain saddle and boundary switch connectors

For the visualization of separating structures of 3D vecbtds
only a few approaches exist. The direct visualization obsafion
surfaces do not work well on complex 3D vector elds because o
visual clutter. One solution to this problem is the concdtanldle
and boundary switch connectors [31, 34]. A saddle conndstor
the intersection curve of the saddle surfaces from an &tigpand

a repelling saddle point. Therefore, it is the intersecfrom two
separating surfaces.

Our

Figure 2: Example eld (2): volume renderings of correspond ing co-
ordinates (top, left) of the sink distributions; (top, right) of the out ow
distributions; (bottom, left) of the source distributions; (bottom, right)
of the in ow distributions.

integration ofry, which makes their computation dif cult. A so-
lution for 2D uncertain vector elds is proposed in [22]. Fhap-
proach computes saddle distributions by the backward riatiem
of the squared velocity gradient of. The result contains all critical
distributions, which have to be classi ed. This is done bynpait-
ing a modi ed Poincare-Hopf index applied ar. However, such
a classi cation becomes dif cult and unstable in the 3D case

Here we follow a different strategy to nd separating stures.
We consider the de nition of repelling and attracting saddbints
for certain 3D vector elds:

A repelling saddle point has one in ow direction and a 2D
plane with out ow behavior.

An attracting saddle point has one out ow direction and a 2D
plane with in ow behavior.

In both cases the 2D plane separates two sources and twq sinks
respectively. Based on this observation and the segmentati3D
uncertain vector elds, we can compute the separating siras
without saddle distributions in uncertain vector elds.

Givenn sink distributions andn source distributions, a stream
line integration started from every locatigr;y;2z) converges to a
sink distribution under forward integration and a sourcgtridiu-
tion under backward integration. Considering de nition l&se
sink and source distributions can be described by linearbéom
nationsafL ; a pi(xy;2) andafL , b fi(x;y;2) with respect to the

ordinatesaj(x;y;2) and bj(x;y;2) are scalar elds in the domain
D. These scalar elds represent the probability that a plertd

a location(x;y; 2 moves to the i-th sink and comes from the j-th
source distribution. Figure 2 shows volume renderings eb¢h
scalar elds. In most parts of the eld the values are eitheorl
0, meaning that either all or no particles converge to thk sp.
source. In contrast, at locations with values @;(x;y;2) < 1 and
0< bj(xy;2) < 1, the particles converge to multiple sinks resp.
sources. These volumes represent the separating stisiéounen-
certain vector elds. Now we can de ne uncertain saddle @mn
tors as overlapping of separating volumes equivalent tdrites-

Here we adapt the saddle connector approach for 3D uncertainggciion of separating surfaces:

vector elds. Inthe certain case saddle points are theistapoints
for the integration of the saddle surfaces. In 3D uncertaictor
elds saddle structures are unstable under forward and viaick

De nition 7. Given is a 3D uncertain vector eld containing
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Figure 3: Example eld (2): (a) uncertain saddle connectors (b)
uncertain saddle connectors uncertain saddle and boundary switch
connectors.

a pair
and an-

uncertain saddle connector is the volume where the follgwin
scalar eld g(x;y;2) > O:

%y =(1 am(Xy:2)(1 bm(xy;2) (11)

with
am(xy;2) = maxaa(xy; 2); ap(X:y; 2) (12)

and
bm(x;y;2) = max(be(X;Y;2); ba(X:y: 2)) (13)

Figure 3a shows an example. We extend this de nition to beund
ary switch connectors by treating out ow and in ow regionssink
and source distributions, as shown in gure 3b.

De nition 7 gives us a particular uncertain saddle connecto
However, not all combinations of corresponding probapiktds
create saddle connectors. To avoid the unnecessary caimputa
of empty saddle connector elds we compute all uncertairdiad
connectors in one scalar elgy;, simply by replacingam(x;y; 2)
with

amadX;y;2) = maxai(xy;2);:::;an(Xy; 2)) (14)
andbm(X;y; 2) with
bmad(x;¥;2) = maxbi(x;y;2);::1; bm(X Y, 2) (15)
resulting in
San(xy:2=(1 ama)(l bmax: (16)

Note that these saddle and boundary switch connectorsigloes-
tain the saddle points. They appear at crossings of saddle an
boundary switch connectors.

4  VISUALIZATION

The results of our method are multiple scalar elds, repnésg
probability distributions of sinks, sources, saddle canoies and
boundary switch connectors. In order to visualize them weais
volume rendering approach. For this, each type is visudli=e
ing a linear transfer function: sinks in transparent to bh@irces
in transparent to red and saddle and boundary switch commsect
transparent to yellow. To analyze the whole set of sink anolcgo
distributions the alpha value and range of the transfertfons are
user de ned, because these features are represented Inyepden-
sities, which possibly contain very different maximal \edu(de-
pending on the size and the global in uence of a feature). d&or
better visual separation of the different distributionswse specu-
lar lighting.

@ (b)

Figure 4: Example eld (2): (a) visualization of the complete topol-
ogy with saddle connectors (b) in ow, ou ow regions and boundary
switch connectors added to the visualization.

With respect to the goal of an adequate visualization we dis-
play in ow and out ow regions at the boundaries of the domain
also as volume rendering, but more transparent than thesirdal
and source distributions. This avoids an occlusion of theiiriea-
tures. We use for in ow regions a transparent to red tranfsfiec-
tion similar to source distributions and for out ow a tramsent to
blue transfer function similar to sink distributions. Atdnally we
visualize boundary switch connectors with a transparegetiow
transfer function. The nal result is show in gure 4b. In @dto
further reduce occlusions we can also hide these boundgigns
and only display the sink and source distributions and tliellsa
connectors. This is shown in gure 4a.

5 TECHNICAL REALIZATION
5.1 Data acquisition

As mentioned in the introduction we get a number of sampléovec
elds as input data that describe snapshots of a measureither s
ulated ow phenomenon. A typical way to model uncertainty in
physics is assuming a Gaussian distribution. For this wepchen
the average vector eld and the covariances in every datat fram
the given vector elds. This results in a compact format af tn-
certain vector eldry that is easy to use for the next computations.

5.2 Approximation of step sizes

The approximation of optimal step sizes is a precomputatieor
this we computed scalar elds for both forward and backwaie-i
gration. Because the operations described in section 8.Beal,
the computations are done in parallel. In our test cases weaus
minimum step siz&ts min= 0:002 and a maximurdts max= 50.

5.3 Computing the spanning source/sink sequence

For the computation of the spanning sink and source sequeace
use a Monte Carlo method that is very similar to the approaeh p
sented in [22]. It also starts with an uniform particle disition
Po in the domainD. For the numerical integration we adapted the
“uncertain” Euler integration step into 3D space. This roeitls
similar to the Euler-Maruyama scheme. It uses the uncevigitor
eld, the step size eld, and the particle distribution. Imet 3D case
the particle distribution consists of millions of partisleastead of
hundreds of thousands of particles in the 2D case. The omaly-pr
tical way to deal with that mass of computations is using tRJG
Therefore we implemented the whole integration in CUDA. figve
particle creates its own thread. The uncertain vector eid the
step size eld have to be copied only at the start into the GRithm
ory. Then we copy groups of particle positions at every irgggn
step into the GPU memory and back, because usually they tanno
be handled at once.

We run this Monte Carlo method until the particle distributi
does not change signi cantly any more. This is achieved bggis



buckets to observe the particle distribution. We obsereeciin-
vergence of the particle density by accumulating the chawogall
buckets over 10 integration steps and divide it by the nurabpar-
ticles times 10. We stop the integration when this value iallem
than Q01. After that the number of particles in the buckets repre-
sent the resulting distribution.

An additional treatment is necessary for the domain boyndar
Here we search for in ow and out ow regions in an uncertaimeo
text. For this we evaluate the vectors and covariance neatetthe
boundary of the domain. We create uniformly distributed giam
points on an ellipse that represents the spatial standaddtite
around the mean vector. Now we can count the number of sample
points inside and outside the domain. The ratio gives thbaiib-
ity that this boundary vector points outside or inside thendm.
These probabilities are also stored in the particle density All
computations concerning the particle distribution ardw@tad on
a grid that has twice the resolution of the data set. Thiseoresy
ignoring small and thin features.

Finally we have to nd local maxima in the particle densitydan
apply a ood Il algorithm to them. This gives us the spanning
source and sink sequence.

5.4 Computing corresponding coordinates

The computation of the coordinates belonging to the sinké an
sources is done exactly in the same way as in the 2D case. A
large number of particles are started at every data pointefact
numbers see section 6). During the Monte Carlo integratiey t
reach sinks and sources, respectively. For each data pdistra
bution is computed that consists of the probabilities thatginks
and sources are reached. We modify only the acceleratidn tec
nique that uses spatial coherence. Instead of using theogedp
onion skin scheme as particle seeding structure, we usepttie s
planes of an octree as seeding scheme that works betterrf8Dou
data sets.

6 RESULTS

To test our approach, we apply the extraction of uncertaitofbl-
ogy to two simulated data sets. Our test system is an InteDQ66
with 8GB RAM and a NVIDIA GeForce GTX 460.

6.1 DNS simulation

Direct Numerical Simulations (DNS) are becoming increglsin
useful for turbulent ow applications. They constitute atunal
complement to experiments, in particular to investigateletail
complex physical processes in simple geometries. It doeseho
on any approximate turbulence models, nevertheless thewam
tional cost is tremendous.

The simulations presented here have been carried out wéth th
DNS codep? originally developed by Thévenin and coworkers [7].
It is a nite-difference three-dimensional code solvingetfully
compressible Navier-Stokes equations for reacting ow®ria-
tives are computed using centered explicit schemes of sixiethe
temporal integration is realized with a Runge-Kutta altioni of or-
der four. The code is parallelized through domain decontioosi

In this study a turbulent air ow without reactions is considd
in a cubic domain with a size of® 0:5 0:5cn? with 51 equidis-
tant points in each directions. This leads to a xed, homegers
spatial resolution of 10@m, necessary to resolve accurately the ne
details of the ow. Periodic boundary conditions are apglan all
sides of the domain.

A turbulent ow is considered initially superposed with alceof
synthetic homogeneous isotropic turbulence correspgrtdia von
Karman spectrum with Pao correction for near-dissipasicale.

An initial turbulence eld is generated with a turbulent t@-
tion velocityu’= 3 m/s and an integral scale= 4:5 mm. It yields

@)

(b)

Figure 5: DNS simulation: (a) topology of the turbulent ow phe-
nomenon example, described by an uncertain vector eld (b) critical
points and illuminated stream lines of the turbulent ow phe nomenon
example.

a turbulent Reynolds number of Re 250 and the corresponding
Kolmogorov scale is 25 mm.

The result of such a simulation was given as a time series of 50
vector elds in an interval of 2ns. The simulated turbulent ow
changes its characteristic very fast. In the beginning the con-
tains strong divergence that decreases over the time. Sawead
topological features inside the eld only in the beginningherwise
there are only features generated by boundary effects.hEarre-
ation of the uncertain vector eld we have chosen four tingpstin
a rather small time interval from:00257s to 0018 such that the
eld does not change too much and contains some featuresteFhe
sulting visualization in gure 5a contains 5 sink and 3 s@udistri-
butions (including in ow and out ow) and one saddle like iieg in
the middle of them. The computation time for this exampleisua
42 minutes: a few seconds precomputation of the step siziks, el
7 minutes for the computation of the spanning sink and soseee
qguence with only 20 particles per data point (1000 integresteps
were needed for each sequence) and 35 minutes for the cdioputa
of the corresponding coordinates with 200 particles pet gaint.

In comparison gure 5b shows the common topological skeietb
the average certain vector eld. It contains 234 criticalme and



no clear structure is visible. This data set con rms for 3Datvh
has already been shown for 2D [22]: the consideration ofajlob
uncertainty in ow elds tends to act as a feature reductiorhe
uncertain skeleton contains only the most important festwvhile
unimportant topological features in the certain ow datad{gh are
mainly due to noise) are removed.

6.2 Flow in the Paci c Ocean

These simulations were carried out at the German Climate-Com
puting Center using the MPI-OM ocean model. The MPI-OM
model was developed at the Max-Planck-Institute for Meitemy

in Hamburg, and is used to simulate various processes inithe d
ferent oceanic regions. It is part of the simulations thatearried
out for the IPCC assessment reports. The data set has aiftatizo
resolution of 1 degree (360x180) and consists of 40 deptldev
speci ed by pressure, and shows the velocity of ocean ctsren
The data set contains the average vector elds for each moiuth
one year.

We use these velocity elds of this simulation to create acain
tain vector eld. It symbolizes the general global ow in tleeans
over one year. This data set contains several thousandatofés.

For this reason we choose only a section of this data set,tapar
the paci c ocean in front of South America. The original dat

is given on a stacked grid. To use our method we resampled the
data on an uniform grid. The grid of the section that we arealyz
is64 91 100. The result of our analysis contains 124 uncertain
sources and 104 sinks as shown in gure 6 and 7. We compare our
result with the analysis of the average vector eld, whicmtzins

527 critical points (shown in gure 8).

The runtime of the computation of the uncertain topology is
about 7 hours: 10 minutes precomputation, 50 minutes camput
tion of the spanning sink and sources sequence with 10 [ertic
per grid point and the rest of the time for the computationhef t
corresponding coordinates with 100 particles per grid fpoirhe
reason for this long computation time is the strong variatiove-
locity in the given data. The precomputation of the step blps
to compensate for the very slow motion in the deep sea, btilit s Figure 6: Flow in the Paci ¢ Ocean: topology of the uncertain vector
stays slow. To compute the spanning source and sink sequence  eld (north top).
needed 12000 integration steps for each sequence untiattieles
arrive in an classi ed region.

7 CONCLUSION

This paper presents the — to the best of our knowledge — rst ap
proach for a visual analysis of the global uncertainty in 32-v
tor elds. For this, topological concepts have been applistart-

ing from an existing solution of 2D uncertain topology, thenss-
formation to 3D data contained the de nition of uncertainidie
and boundary switch connectors, a signi cant acceleratiomto a
better uncertain integration scheme, and a suitable vispa¢sen-
tation of the resulting multiple scalar elds de ning the certain
skeleton. The solution has been tested on a number of 3Dtaicer
ow data sets.

The most relevant open question for future research is ttemex
sion to uncertain time-dependent ow elds, investigatimgrtex
cores and vortex regions. However, this is not only an opers-qu
tion for uncertain topology but for topological conceptsriselves:
even for certain vector elds, general solutions for a tidependent
topology are still an open eld of research [25]. Furtheritspfor
future work are the extraction of other critical structuliks closed
orbits and strange attractors, and the use of uncertaivesit
visualization as a vector eld simpli cation method.

Figure 7: Flow in the Paci c Ocean: topology of the uncertain vector
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