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Abstract. We propose a framework for locally adaptive level set func-
tions. The impact of well-known speed terms for the evolution of the ac-
tive contour is adjusted by parameterising them with functions based on
pre-defined properties. This allows for the application of level set meth-
ods even if image features are subject to large variations or if certain
properties of the model are only valid for parts of the segmentation pro-
cess. We present a number of examples and applications for the proposed
concept and also address advantages and drawbacks of combinations of
locally adaptive speed terms.
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1 Introduction

Level set methods have become very popular in recent years in many image pro-
cessing domains. They allow for the segmentation of images even if the shape of
the desired object is unknown or has large variances between data sets. Level
sets can adapt to topological changes, usually only require a small number of
parameters to be adjusted and their extension to higher dimensions is straight-
forward.

An implicit active contour φt + F |∇φ| = 0 is evolved either in a propagation
process [11] or via energy minimisation [2]. Each point on the zero level set is
moving along its surface normal with a speed F . This speed is calculated ac-
cording to pre-defined properties of the desired object. In image processing these
properties are usually image features like gradients [10], texture measures [12] or
image intensities [2]. To compensate for image artefacts such as noise or imper-
fect boundaries a second class of speed terms is often needed for regularisation
of the contour. Regularisation of the front ranges from smoothness terms based
on mean curvature [11] to more sophisticated approaches such as incorporation
of model-based knowledge based on shocks [1], geometric shapes like circles or
ellipsoids [16] or the topology of the desired object [8]. Other approaches even
incorporate explicit shape knowledge [3][9].

Unfortunately the use of sophisticated speed terms has a number of draw-
backs in certain situations. The definition of level sets is very general, allowing
for their application to data sets from many different domains. By incorporating
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highly specialised speed terms, the method becomes limited to specific applica-
tions. Interesting properties of the method, such as the extension to any number
of dimensions, are lost. Also, for a number of segmentation problems it is not
possible to incorporate any of these advanced speed terms because the shape of
the desired object is not known in advance. Examples in medical image analysis
are the segmentation of the cerebral grey and white matter or segmentation of
the vascular or bronchial tree. We propose a new framework for the design of
level set speed functions that is also suitable for this kind of application.

2 Locally Adaptive Speed Terms

Many speed terms for level set functions can be incorporated for the segmen-
tation of different kinds of images and data sets simply by adjusting a param-
eter that controls the impact of that particular speed term. For example, the
often used speed function F = Fg(Fν + Fκ) includes the well-known gradient-
based speed term Fg(α) = (1 + α|∇Gσ ∗ I(x)|)−1 and the curvature-based term
Fκ(ε) = ε∇ ∇φ

|∇φ| . In the first case, the value of α affects how large gradients need
to be for the front to stop. In the second example, ε determines how smooth the
contour is going to be and how much it will be affected by image noise.

Unfortunately, these parameter values are usually constant for the whole
propagation process. If certain properties of the image differ substantially over
image space, adjustment of the parameters is difficult. An example are field
inhomogeneities in magnetic resonance imaging. Model-based properties may
change in the same way. In the segmentation of the human brain, thickness
of the cortical grey matter is different in various regions of the brain. Even
the established coupled surface approach [7] does not account for that. More
generally, smoothness of the contour may be desired only for certain parts of
the objects but not for others. With other deformable models such as the active
shape model [4] or mass spring models [15] it is possible to address this kind of
variability by adjusting the modes of variation or the parametrisation of springs,
respectively. To allow for the incorporation of such functionality in level sets and
thus increase the application spectrum these methods, we propose the concept
of locally adaptive speed terms for level set methods.

A speed term Fi = Fi(f) is dependent on one or more features f. Instead of
controlling the influence of Fi on the active contour with a constant parameter,
a function ωi = ωi(g) is used for adjusting the impact of Fi based on a second
set of features g. The definition of a level set speed term F̂i is then given by

F̂i = ωiFi = ωi(g)Fi(f). (1)

Note that the properties g need not be based on image features. Below we will
give examples of weighting functions ω based on distance-measures and position
in image space. Using ωi it is possible to adjust the influence of Fi, to apply it only
for certain parts of the image or to set it to zero if it would otherwise impede the
desired evolution of the active contour. If all ωi and Fi are continuous functions
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(a) Test image (b) Fi (c) ωi (d) F̂i

Fig. 1: Example for a locally adaptive speed term based on distance. Bright
intensities indicate a high velocity, dark intensities a low velocity. An image-
based speed term Fi based on image intensities is parameterised by a function
ωi depending on distance and prevents the front from evolving if its distance to
the light grey region on the right side is less than 15 pixels. The resulting speed
term F̂i is superimposed on figure (a) for better visualisation.

the method is numerically stable and the combination of locally adaptive speed
terms

F = ω1F1 + ω2F2 + . . . + ωnFn, (2)

will be a continuous function as well. If for some speed terms no weighting
function is necessary, ωi can be chosen such that F̂i = id(Fi). Figure 1 shows a
simple example for a locally adaptive speed function based on distance. Similar
to model-based speed terms, the influence of more sophisticated parameterising
functions ωj might also change over time.

The proposed concept allows for the use of comparatively basic speed terms
even for challenging segmentation tasks. By using parameterising functions, well-
known speed terms can be incorporated even if certain properties that define the
object of interest do not hold for all parts of that object. Vice versa, they can
also be employed if such properties are only needed for a correct segmentation
of few or small parts of the object. A number of previously published examples
that fit into this framework are summarised below. Applications are given in
section 3.

2.1 Speed Terms Based on Distance

We demonstrated the possibilities of locally adaptive speed terms based on dis-
tance measures to introduce additional knowledge to the segmentation process
in [13]. A number of segmentation results are depicted in figure 2. Given figure
2a, a segmentation process was startet with a single seed point within object A.
Figure 2b shows a segmentation where the level set stops based on image-features
but keeps a minimum distance of 15 pixels to region F (the corresponding speed
function has been visualised in figure 1). In figure 2c a speed function that used a
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(a) (b) (c)

(d) (e) (f)

Fig. 2: Effects of distance-based speed terms for image segmentation

minimum and maximum distance criterion has been employed. The front keeps
a minimum distance of dmin = 15 pixels to region F within objects A and D,
where the properties of the desired object as defined in the speed function hold.
The front does not stop at the boundary of A where the distance to F is too
large. Instead it propagates into object E, but a maximum distance of dmax = 30
pixels is kept to region F . Again, the weighing functions are quite simple: the
maximum distance is realised by a sigmoid function while the evolution of the
front for dmin < d < dmax is controlled by a regularised boxcar function (Such a
function is used in section 3 for the segmentation of white matter in MR images
of the brain). In figure 2d the front stops d = 15 pixels outside object A. Object
B is segmented as well because its distance to A is smaller than d. Figure 2e
visualises the segmentation result using an acceleration term that connects ob-
jects that have similar properties if their distance is smaller than a pre-defined
distance d. That way, objects B and C have been connected to A. Note that the
front propagated directly from A to the other objects and does not leak into the
image background. Finally, figure 2f combines both approaches. Objects B and
C are again connected to A but the front keeps a distance of 10 pixels to the
white rectangle. For the definitions of the speed functions and further discussion
the reader is referred to [13].
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2.2 Speed Terms Based on Location

Speed terms can also be parameterised based on the absolute or relative position
of the front in image space. In the first case the weighting function ω has the
same size as the data set D that is being segmented. That is, for each pixel
x ∈ D exists a parameter ω(x). This allows for the incorporation of information
from an external source. We have applied this concept in [14] to ensure for the
anatomical correct segmentation of cortical grey matter (see figure 4c). Also,
Cremers et al. [5] incorporated a similar approach for allowing user interaction
during the segmentation process.

If speed terms are dependent on local position, parameter values are adjusted
based on pixels in the vicinity of front pixels. In [14] the image space has been
subdivided into a grid of cubes of equal size to account for the effect of magnetic
field inhomogeneities on the data. Within each subdivision Di parametrisation
was assumed to be constant. The transition between neighbouring subdivisions
Di and Dj have been smoothed based on the distance to the centers of Di and
Dj and the reliability of estimates for the intensity distributions. Again, the
interested reader is referred to [14] for details. Obviously, it is not necessary
to choose a static subdivision of image space for the calculation of parameters
based on local position. A dynamically chosen set of pixel (for instance within a
hyperball around x) is also possible but computationally much more expensive.

2.3 Combinations of speed terms

Obviously weighting functions are not limited to the presented examples but
can be based on any property that can calculated for each pixel on the front.
The above examples have been chosen because they are available at nearly no
additional computational cost. Other properties of the image or level set function
that might also be incorporated in this way are image features or the speed
of the active contour itself. If computational cost is not an issue, choices for
weighting functions are only limited by properties of the desired object that can
be formulated in mathematical terms.

Furthermore, locally adaptive speed terms can also be combined. In figure
2f a simple example has already been illustrated. In our experience a small set
of weighting functions is useable for a surprisingly large number of applications.
Regularised Heaviside- and Boxcar functions are easily incorporated examples.
These functions also have the advantage that the set of parameters is limited
to the slope of the function, which usually only needs to be slightly adjusted or
not changed at all for different applications. Based on the above considerations
this concept also allows for the creation of a construction kit for level set speed
functions. By employing a set of weighting functions as well as a bank of well-
known speed terms, the framework can thus be employed for a large number of
segmentation problems.

Finally, a number of potential drawbacks of this framework should be ad-
dressed as well. Even though the number of parameters for each combination
ωiFi is small, parameter space can get large when a number of locally adaptive
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(a) (b) (c) (d) (e)

(f) (g) (h)

Fig. 3: Segmentation of dendritic spines using a distance based acceleration term.
Figures 3a–3c shows pre-processing of data sets of the original data sets by con-
trast enhancement and low pass filtering. Figures 3d and 3e show segmentation
results using a conventional level set speed function and the locally adaptive
function, respectively. Figures 3g and 3h present results for a second example.
Again most spines were found by the algorithm, although some have been missed
since their image features are too similar to background noise (see enlarged re-
gion).

speed terms are combined. In this case even slight adjustments to parameters
might not be straightforward anymore. In the same way, the small computa-
tional offset introduced by each parameterising function ωi might add up when
a number of adaptive speed speed are combined. And finally, since it is possible
to ‘switch off’ speed terms it might happen that for certain pixels in image space
no speed is defined. Again, this is a problem that will usually only occur with
the combination of more speed terms when parameter space becomes difficult to
manage.

3 Applications

We will give a few examples of application of locally adaptive speed functions
to 3D medical data sets to demonstrate their benefit to various segmentation
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(a) (b) (c)

Fig. 4: Segmentation of the cortical white matter in the human brain brain. (a)
Result using commercial software. (b) Result using our locally adaptive algo-
rithm. (c) Cortical thickness map according to [6].

tasks. Details on the algorithms and an evaluation of the results can be found
in the respective publications.

In [13] we incorporated a distance-based acceleration term for the segmen-
tation of dendrites in microscopic images. Due to partial volume effects, small
spines attached to the dendrites do often appear unconnected in the data sets.
Using a locally adaptive speed function, the propagating front is accelerated if
spines are detected within a certain distance to the active contour. Segmentation
results could thus be significantly improved in comparison to a conventional level
set segmentation. Examples are given in figure 3.

We also employed an algorithm including locally adaptive speed functions
based on local and global position in image space to guarantee for an anatom-
ically correct segmentation of the cortical grey and white matter in MR data.
Figure 4 shows a comparision between segmentation results for white matter
using the commercial software BrainVoyager as well as our adaptive level set
algorithm. A visual inspection by neurobiologists suggested that the boundary
between grey and white matter found by our algorithm is usually more exact
than the boundary found by the commercial software, which could often not
provide a correct segmentation result in the presence of strong magnetic field in-
homogeneities. Our algorithm uses a modified coupled surface approach [7]. The
distance between inner and outer cortical surface varies between 1.5 − 2.5 mm
in the occipital lobe to about 4 − 5 mm in the frontal lobe of the brain [6]. We
employed a weighting function based on the absolute position within the brain
to guarantee for a correct estimation of cortex thickness (see figure 4c). Further-
more, image-based speed terms are parameterised based on an analysis of local
intensity distributions as briefly described in section 2.2.

4 Conclusions

We presented a novel framework for the design of level set speed functions using
locally adaptive speed terms. By parameterising a level set speed term with a
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function ωi its influence on the active contour can be adjusted depending on pre-
defined properties. It is also possible to define speed terms for segmentation of
parts of the desired object only and to switch them off when they are not needed.
Examples for locally adaptive speed terms as well as possible applications have
been presented. Future work includes the expansion of the concept to create a
construction kit for level set speed functions.
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